Convex Meshfree Solutions for Arbitrary Waveguide Analysis in Electromagnetic Problems
نویسندگان
چکیده
This paper presents a convex meshfree framework for solving the scalar Helmholtz equation in the waveguide analysis of electromagnetic problems. The generalized meshfree approximation (GMF) method using inverse tangent basis functions and cubic spline weight functions is employed to construct the first-order convex approximation which exhibits a weak Kronecker-delta property at the waveguide boundary and allows a direct enforcement of homogenous Dirichlet boundary conditions for the transverse magnetic (TM) mode analyses. Four arbitrary waveguide examples are analyzed to demonstrate the accuracy of the presented formulation, and comparison is made with the analytical, finite element and meshfree solutions.
منابع مشابه
Exact analytical approach for free longitudinal vibration of nanorods based on nonlocal elasticity theory from wave standpoint
In this paper, free longitudinal vibration of nanorods is investigated from the wave viewpoint. The Eringen’s nonlocal elasticity theory is used for nanorods modelling. Wave propagation in a medium has a similar formulation as vibrations and thus, it can be used to describe the vibration behavior. Boundaries reflect the propagating waves after incident. Firstly, the governing quation of nanoro...
متن کاملSolving Helmholtz Equation by Meshless Radial Basis Functions Method
In this paper, we propose a brief and general process to compute the eigenvalue of arbitrary waveguides using meshless method based on radial basis functions (MLM-RBF) interpolation. The main idea is that RBF basis functions are used in a point matching method to solve the Helmholtz equation only in Cartesian system. Two kinds of boundary conditions of waveguide problems are also analyzed. To v...
متن کاملAn improved truly meshless method based on a new shape function and nodal integration
An improved truly meshless method is presented for three-dimensional (3D) electromagnetic problems. In the proposed method, the computational time for the construction of the introduced shape function is lower than the other meshless methods considerably. An efficient and stable nodal integration technique based on the Taylor series extension is also used in the proposed meshless method. Weak-f...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملLong Time Asymptotics of Solutions to the Anharmonic Oscillator Model from Nonlinear Optics
The anharmonic oscillator model desribing the propagation of electromagnetic waves in an exterior domain containing a nonlinear dielectric medium is investigated. Local decay of the electromagnetic eld for t ! 1 in the charge free case is shown. If the potential of the oscillating particles is in addition convex it is shown that for arbitrary initial states the electromagnetic eld converges for...
متن کامل